Ramos DFV, Mancuso RI, Contieri B, Duarte A, Paiva L, de Melo Carrilho J, Saad STO, Lazarini M. Rac GTPases in acute myeloid leukemia cells: Expression profile and biological effects of pharmacological inhibition. Toxicol Appl Pharmacol. 2022 May 1;442:115990. doi: 10.1016/j.taap.2022.115990. Epub 2022 Mar 22. PMID: 35331739.

Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematological neoplasm with low survival rates. Thus, the investigation of new therapeutic targets is essential. The Rac subfamily of GTPase proteins has been shown to participate in the physiopathology of hematological malignancies. However, their expression and function in AML remain unclear. In this study, we evaluated Rac1, Rac2 and Rac3 gene expressions in AML and their impact on clinical outcomes. We further investigated the effects of the in vitro treatment with a Rac inhibitor (EHT-1864) on AML cell lines. Rac3 expression was increased in AML derived from myelodysplastic syndromes compared to healthy donors. Rac2 expression did not differ between AML patients and healthy donors, but de novo AML patients with higher Rac2 presented lower overall survival. Oncogenic pathway gene-sets related to AKT/mTOR were identified as associated with Rac1, Rac2 and Rac3 expressions. EHT-1864 treatment reduced the viability of OCI-AML3, KG1 and Kasumi-1 cells in a time and dose-dependent manner. In OCI-AML3 cells, treatment with EHT-1864 induced apoptosis, autophagy, and led to the accumulation of cells in the G1 phase of the cell cycle. These changes were concomitant with alterations in p53 and cyclins. Dowregulation of the PI3K/AKT/mTOR pathway was also observed. Interestingly, the combined treatment of EHT-1864 and low doses of daunorubicin enhanced OCI-AML3 cell apoptosis. In conclusion, Rac2 expression is a prognostic factor in AML and our preclinical results suggest that Rac inhibition may be an attractive mechanism to compose the antineoplastic strategy for this disease.

Keywords: Acute myeloid leukemia; EHT-1864; RAC Subfamily; Rac1; Rac2; Rac3; Rho GTPases; leukemia.

Full text link